

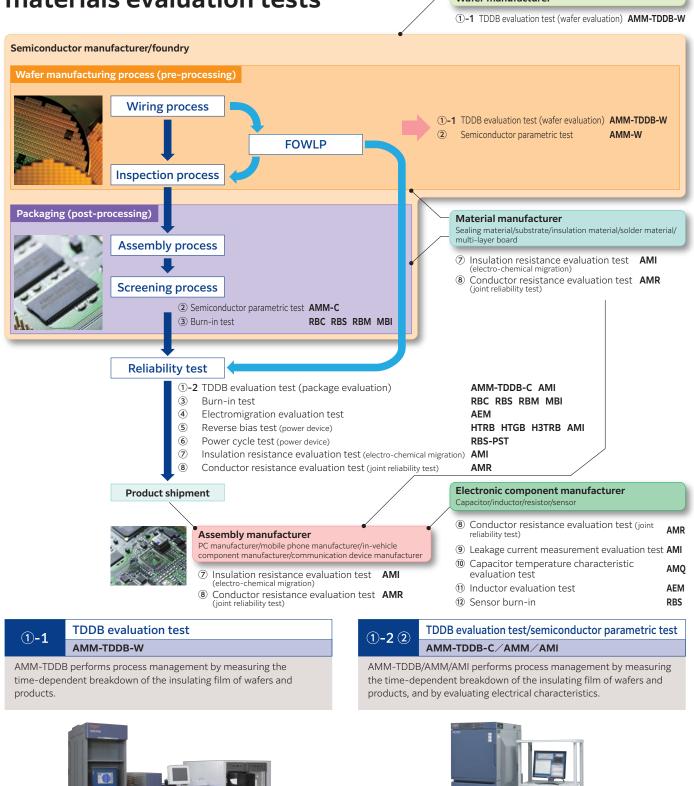
Reliability Evaluation Supporting Electronic Devices

Key devices

Semiconductors (Memory device, flash memory and power device, FPGA and RF device)

Sensor (CMOS, LiDAR, current sensor and G3)

Parts (Capacitor, inductor and resistor)


Changes in environmental factors

DC high voltage and large current

Increased self-heat generation (Device miniaturization, FOWLP and 3D mounting)

Guaranteed device performance under a wide range of temperatures

Semiconductor manufacturing processes and evaluation tests and peripheral electronic components/ materials evaluation tests

8	
2	ter a

Voltage/current application range	Voltage ±50 V/Current ±100 mA	
Number of DUT Max. 108 DUTs (package) processes Max. 324 DUTs (wafer)		

(3 (12) Burn-in (memory/logic/in-vehicle device/sensor) RBC RBS RBM MBI

Screening is conducted to prevent semiconductor products with initial failures from being sent to the market.

Stress voltage	Voltage specified for each device is supplied.	
Chamber	Temperature chamber (150°C)/Temperature and humidity chamber	

 * We can make suggestions to meet your requirements.

(5)	Reverse bias test (power device)	
3	HTRB HTGB H3TRB AMI	

When the voltage of a power device is shut off, the inductors in the circuit generate surge voltage, which may damage the device. A reverse bias test is conducted to improve the reliability of the product.

Drain power supply	0 to 2 kV or 0 to 3 kV	
Gate power supply	0 to ±30 V or 0 to ±35 V	
Temperature control In-chamber DUT board connection type: 200°C or 350		

* Temperature/humidity type is also available.

Channel configuration	Standard 25 channels (maximum 150 channels per rack)	
Test control unit	5ch 25ch	
Resistance measurement range	$2\times10^5\Omega$ to $1\times10^{13}\Omega$ (when applying 100 V) $2\times10^3\Omega$ to $1\times10^{11}\Omega$ (when applying 1 V)	
Voltage application range	100V/ 500V /1000V /2500V	

* Contact us for the test voltage.

Electromigration evaluation (Cu Al Bump Ball) AEM

This system predicts the life of a product by measuring the time until wire breakage by supplying a current to the devices. The system can also be used for the reliability evaluation of C4 semiconductor packages.

Stress current source	Output range +DC0.1mA~200mA, 5A	
Oven temperature control range	+65~+400°C	

6

Power cycle test (power device) RBS-PST

The self-heat generation cycle that occurs when a power device is turned ON or OFF can cause disconnection of wiring and damage to heat dissipation circuits. Power cycle tests are conducted to improve the reliability of products.

■Major test modes

Continuous mode	Control the temperature and amount of cooling water to achieve the device temperature setting while lce is constant.
Vf cycle mode	Repeat the control of turning Ice ON/OFF to make the device temperature reach the set temperature.
Cycle mode Turn Ice ON/OFF repeatedly for the setting time.	

8 Conductor resistance evaluation test (joint reliability test)
AMR

AMR improves reliability of products by measuring the disconnection caused by the deformation in substrates due to changes in the ambient environment or by the strain between self-heat generation and the ambient environment.

Application system	Direct electric current measurement system	
Channel configuration	Standard 40 channels (maximum 280 channels per rack)	
Resistance measurement range	1×10 ⁻³ ~1×10 ⁶ Ω	

(10)	Capacitor temperature characteristic evaluation test
	AMQ

IoT, 5G and automotive electronics carry many electronic components such as capacitors and resistors. These device performances are temperature-dependent, which makes temperature reliability test a must.

Measurement method	AC four-terminal pair measurement (end of measurement cable)	
Measurement interval	Min. 1 minute to 1500 minutes (Variable in 1 minute increments)	
Measurement range	Measured frequency Dielectric loss angle Impedance	20Hz~1MHz 0.0001~10.0000 tanδ 10mΩ~100M

12	Sensor burn-in
	RBS

Sensors are used in various places. Screening is conducted to prevent products with initial failures from being sent to the market. * In-vehicle sensors, in particular, require screening because they may affect human life.

Stress voltage	Voltage specified for each device is supplied.	
Chamber	Temperature chamber (150°C)/Temperature and humidity chamber	

* We can make suggestions to meet your requirements.

Inductor evaluation/electromigration evaluation AEM

Multi-layer chip inductors used for IoT, 5G and in-vehicle applications are subject to damage due to wire breakage caused by electric currents and heat generated over long-term use. Supplying a constant current to the conductor coil at a high temperature allows service life evaluation.

Output current (10 A system)

Number of ranges	3 ranges			
Number of ranges	100 mA range	1,000 mA range	10,000 mA range	
Setting range	0~100.000mA	0~1,000.000mA	0~10,000mA	
Setting resolution	0.001mA		1mA	
Accuracy-guaranteed output range	10~100mA	100~1,000mA	1,000~10,000mA	
Output accuracy	±0.1% F.S (F.S=100mA)	±0.1% F.S (F.S=1,000mA)	±0.1% F.S (F.S=10,000mA)	

ESPEC CORP. https://www.espec.co.jp/english 3-5-6, Tenjinbashi, Kita-ku, Osaka 530-8550, Japan Tel: 81-6-6358-4759 Fax: 81-6-6358-1453